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Abstract

We review a simple model of closed economy, where the economic agents make
money transactions and a saving criterion is present. We observe the Gibbs distri-
bution for zero saving propensity, and non-Gibbs distributions otherwise. While the
exact solution in the case of zero saving propensity is already known to be given
by the Gibbs distribution, here we provide the explicit analytical form of the equi-
librium distribution for the general case of nonzero saving propensity. We verify it
through comparison with numerical data and show that it can be cast in the form
of a Poisson distribution.
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1 Introduction

It is known that the higher end of the distribution of income f(m) follows
the Pareto law [1], f(m) ∝ m−1−α, where m is the income (money) and the
exponent α has a value in the interval 1 and 2 [2,3,4,5]. An explanation of
the Pareto law, in terms of the laws regulating the system micro-dynamics,
should take into account its basic constituents, i. e. the trading agents, as well
as the criteria used to carry out the economic transactions. Several studies have
been made to provide an explanation (see Ref. [6] for a brief summary and
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more references). In this respect, it is of general interest to study some simple
systems of closed economy, which can be either solved exactly or simulated
numerically, in order to investigate the relation between the micro-dynamics
and the resulting macroscopic money distribution [7,8,9,10,11,12]. In this pa-
per we consider the generalization of a simple model of money conserving
economy, realized by introducing a criterion of saving in the transaction law,
through the saving propensity λ. We study numerically its asymptotic money
distribution as a function of the model parameters. We show that it is not a
Gibbs distribution and, by direct comparison with numerical data, that the
corresponding analytical solution has the form of a Poisson distribution.

2 Model

In the simple model considered [8], N agents can exchange money in pairs
between themselves. For the sake of simplicity we assume that all the agents
are initially assigned the same money amount m0, despite this condition is
not restrictive for the following results. Agents are then let to interact. At
every “time step”, a pair (i, j) is randomly chosen and the transaction takes
place. During the transaction, the agent money amounts mi and mj undergo a
variation, mi → m′

i and mj → m′

j . Money is assumed to be conserved during
the transaction, so that

mi + mj = m′

i + m′

j . (1)

In this basic model, m′

i and m′

j are obtained through a random reassignment
of the total money (mi + mj),

m′

i = ǫ (mi + mj) ,

m′

j =(1 − ǫ)(mi + mj) , (2)

where ǫ is a random number, extracted from a uniform distribution in the
interval (0, 1). Notice that this model of dynamics, as well as its variations
considered in the following, ensures that agents have no debts after the trans-
action, i. e. they are always left with a money amount m ≥ 0. It can be shown
that, merely as a consequence of the conservation law (1), the system relaxes
toward an equilibrium state characterized by a Gibbs distribution [7,8,9],

f(m) = β exp (−βm) , (3)

where β = 1/ 〈m〉 represents the inverse average money and 〈m〉 =
∑

i mi/N ≡
m0. This means that after relaxation, the majority of the agents has a very
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small amount of money, while the number of richest agents – e. g. those with
m larger than a given value m′, as well as the fraction of the total money
they own, exponentially decreases with m′. The Gibbs distribution (3) has
been shown to represent a robust equilibrium state, reached independently
of the initial conditions also in generalized models, such as those involving
multi-agent transactions.

However, if a saving criterion is introduced [7,9], i.e. agents save a fraction
λ – the saving propensity – of the money they have before the transaction
is made, the shape of the equilibrium distribution changes dramatically. The
conservation equation (1) still holds, but the money to be shared in a trans-
action between the i-th and the j-th agent is now (1 − λ)(mi + mj). Then
Eqs. (2) are thus modified,

m′

i =λmi + ǫ(1 − λ)(mi + mj) ,

m′

j =λmj + (1 − ǫ)(1 − λ)(mi + mj) . (4)

These equations can also be rewritten in the following way,

m′

i = mi + ∆m ,

m′

j = mj − ∆m ,

∆m = (1 − λ)[ǫmj − (1 − ǫ)mi] , (5)

which clearly shows how money is conserved during the transaction.

We performed numerical simulations, for various values of λ, of a system with
N = 500 agents. In each simulation a sufficient number of transactions, as far
as 107, depending on the value of λ, was used in order to reach equilibrium.
The final equilibrium distributions for a given λ, obtained by averaging over
1000 different runs, are shown in Fig. 1.

3 Fitting

The exact solution for the case λ = 0 is known to be given by the Gibbs
distribution, Eq. (3). Here we give the corresponding exact solution for an
generic value of λ, with 0 < λ < 1. This solution was found by fitting the
results of numerical simulations and it turns out to fit extremely well all data.

It is convenient to introduce the reduced variable

x =
m

〈m〉
, (6)
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Fig. 1. Equilibrium money distributions for different values of the saving propensity
λ, in the closed economy model defined by Eqs. (5). The continuous curves are the
fitting functions, defined in Eq. (8).
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Fig. 2. As in Fig. (1), but on a double logarithmic scale.

the agent money in units of the average money 〈m〉, and the parameter

n(λ) = 1 +
3λ

1 − λ
. (7)

We found that the money distributions, for arbitrary values of λ, are well
fitted by the function

P (x) = anx
n−1 exp (−nx) , (8)

where x and n are defined in Eqs. (6) and (7), respectively 1 . Using normal-

1 An excellent fitting is also obtained if the variable in the exponential is raised to a
power c, exp(−nx) → exp(−nx

c), where c is an additional parameter and the value
of c is close to one for all values of λ. Here we assume c ≡ 1, since the corresponding
fitting is good.
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ization conditions, the prefactor is easily shown to be given by

an =
nn

Γ(n)
, (9)

where Γ(n) is the Gamma function.

The fitting curves for the distribution (continuous lines) are compared with
the numerical data in Fig. 1. The fitting describes the distribution also at
large values of x, as shown by the logarithmic plots in Fig. 2. The numerical
values of the parameters an and n are compared with the respective fitting
functions (9) and (7) in Fig. 3. The distribution function (8) still contains an
exponential factor exp(−nx), similar to that of the Gibbs distribution, but the
average value is now rescaled by n. The power xn−1 qualitatively changes the
Gibbs distribution into a curve with a maximum at x > 0, i. e. with a mode
different from zero.
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Fig. 3. The parameters an (left) and n (right) versus λ obtained from numerical
data (dots) and the corresponding analytical formulas (continuous curves) given by
Eqs. (9) and (7), respectively.

It is to be noticed that by introducing the rescaled variable

xn = nx ≡
m

〈m〉 /n
, (10)

and the corresponding probability density Pn(xn) = dF (x)/dxn ≡ P (x)/n,
where F (x) is the cumulative function, and using the explicit expression of
an, Eq. (9), the distribution (8) becomes

Pn(xn) =
1

Γ(n − 1)
xn−1

n exp (−xn) , (11)

which reduces to the Poisson distribution for integer values of n.
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4 Conclusions and discussion

We have studied a generalization of the simple closed economy model, in
which a random reassignment of the agent money takes place, by introducing
a saving propensity λ > 0. We have empirically obtained the corresponding
exact analytical solution from a fitting of the numerical data. The distribution
naturally lends itself to be interpreted as a Poisson distribution P (n, xn) for
the reduced variable xn = m/(〈m〉 /n). The parameter n = 1+3λ/(1−λ) is in
principle continuous but it can vary between 1 and ∞ when λ varies between
0 and 1. This result raises the problem of a more rigorous derivation of the
solution as well as of a deeper physical interpretation of the result.
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